Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
FlatChem ; : 100336, 2022.
Article in English | ScienceDirect | ID: covidwho-1620663

ABSTRACT

Discovered in December 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (aka SARS-CoV-2 or 2019-nCoV) has attracted worldwide attention and concerns due to its high transmissibility and the severe health consequences experienced upon its infection, particularly by elderly people. Over 272 million people have been infected till date and over 5.33 million people could not survive the respiratory illness known as COVID-19 syndrome. Rapid and low-cost detection methods are of utmost importance to monitor the diffusion of the virus and to aid in the global fight against the pandemic. We propose here the use of graphene oxide nanocolloids (GONC) as an electroactive nanocarbon material that can act simultaneously as a transducing platform as well as the electroactive label for the detection of 2019-nCoV genomic sequences. The ability of GONC to provide an intrinsic electrochemical signal arising from the reduction of the electrochemically reducible oxygen functionalities present on its surface, allows GONC to be used as a simple and sensitive biosensing platform. Different intrinsic electroactivity of the material was obtained at each step of the genosensing process, starting from the immobilization of a short-stranded DNA probe and followed by the incubation with different concentrations of the target 2019-nCoV DNA strand. Monitoring such variations enabled the quantification of the target analyte over a wide dynamic range between 10−10 and 10−5 M. All in all, this proof-of-concept system serves as a stepping stone for the development of a rapid, sensitive and selective analytical tool for the detection of 2019-nCoV as well as other similar viral vectors. The use of cost-effective electrochemical detection methods coupled with the vast availability and suitability of carbon-based nanomaterials make this sensing system a valid candidate for low-cost and point-of-care analysis.

2.
Anal Chem ; 93(14): 5963-5971, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-1164779

ABSTRACT

Biofouling caused by the accumulation of biomolecules on sensing surfaces is one of the major problems and challenges to realize the practical application of electrochemical biosensors, and an effective way to counter this problem is the construction of antifouling biosensors. Herein, an antifouling electrochemical biosensor was constructed based on electropolymerized polyaniline (PANI) nanowires and newly designed peptides for the detection of the COVID-19 N-gene. The inverted Y-shaped peptides were designed with excellent antifouling properties and two anchoring branches, and their antifouling performances against proteins and complex biological media were investigated using different approaches. Based on the biotin-streptavidin affinity system, biotin-labeled probes specific to the N-gene (nucleocapsid phosphoprotein) of COVID-19 were immobilized onto the peptide-coated PANI nanowires, forming a highly sensitive and antifouling electrochemical sensing interface for the detection of COVID-19 nucleic acid. The antifouling genosensor demonstrated a wide linear range (10-14 to 10-9 M) and an exceptional low detection limit (3.5 fM). The remarkable performance of the genosensor derives from the high peak current of PANI, which is chosen as the sensing signal, and the extraordinary antifouling properties of designed peptides, which guarantee accurate detection in complex systems. These crucial features represent essential elements for future rapid and decentralized clinical testing.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Humans , Molecular Probes , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL